
J .  Fluid Mech. (1988), wol. 195, p p .  303-340 

Printed in Great Britain 
303 

Symmetric vortex merger in two dimensions : 
causes and conditions 

By M. V. MELANDER,? N. J. ZABUSKYt 
A N D  J. c. MCWILLIAMST 

t Institute for Computational Mathematics and Applications, Department of Mathematics and 
Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA 

$National Center for Atmospheric Research, P.O. Box 3000 Boulder, CO 80307-3000, USA 

(Received, 6 October 1986 and in revised form 16 February 1988) 

Two like-signed vorticity regions can pair or merge into one vortex. This phenomenon 
occurs if the original two vortices are sufficiently close together, that is, if the 
distance between the vorticity centroids is smaller than a certain critical merger 
distance, which depends on the initial shape of the vortex distributions. Our 
conclusions are based on an analytical/numerical study, which presents the first 
quantitative description of the cause and mechanism behind the restricted process of 
symmetric vortex merger. We use two complementary models to investigate the 
merger of identical vorticity regions. The first, based on a recently introduced low- 
order physical-space moment model of the two-dimensional Euler equations, is a 
Hamiltonian system of ordinary differential equations for the evolution of the 
centroid position, aspect ratio and orientation of each region. By imposing symmetry 
this system is made integrable and we obtain a necessary and sufficient condition for 
merger. This condition involves only the initial conditions and the conserved 
quantities. The second model is a high-resolution pseudospectral algorithm governing 
weakly dissipative flow in a box with periodic boundary conditions. When the results 
obtained by both methods are juxtaposed, we obtain a detailed kinematic insight 
into the merger process. When the moment model is generalized to include a weak 
Newtonian viscosity, we find a ‘metastable’ state with a lifetime depending on the 
dissipation timescale. This state attracts all initial configurations that do not merge 
on a convective timescale. Eventually, convective merger occurs and the state 
disappears. Furthermore, spectral simulations show that initial conditions with a 
centroid separation slightly larger than the critical merger distance initially cause a 
rapid approach towards this metastable state. 

1. Introduction 
I n  a series of papers, we have investigated the evolution of one or two isolated 

vorticity regions (Melander, McWilliams & Zabusky 1987 a ; Melander, Zabusky & 
McWilliams 1987b). This study is of paramount importance for a deeper 
understanding of two-dimensional turbulence, partly because like-signed vortex 
regions in a decaying turbulent flow merge or ‘agglomerate’ into increasingly larger 
vortices (McWilliams 1984). This concentration of vorticity takes place through 
mergers of individual vortex regions - hence the importance of the merger process. 
The immediate result of a merger is an elongated compound vortex core. This core 
quickly tends towards a circularly symmetric state because, as we showed in the first 
paper (Melander et al. 1987 a ) ,  a single-signed sufficiently eccentric vortex relaxes 
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towards axisymmetry (circular symmetry) on a circulation timescale owing to an 
inviscid mechanism. 

The first clear experimental evidence for merger was given by Freymuth (1966) in 
photographs of streamlines in a free-shear layer. Later Winant & Browand (1974) 
and Brown & Roshko (1974) gave more quantitative evidence. Computationally, 
Roberts & Christiansen (1972) observed merger of two localized regions using a two- 
dimensional vortex-in-cell code with periodic boundary conditions. This process was 
also observed by Zabusky & Deem (1971), Christiansen & Zabusky (1973) and 
Rossow (1977). Zabusky & Deem studied several initial conditions that model 
aspects of a von Karman wake a t  moderate Reynolds number and observed that 
energy cascade into lower wavenumbers was consistent with a decrease in the 
number of extrema of the pressure contours. The clearest early example was given 
by Christiansen & Zabusky, who modelled aspects of the von Karmiin street a t  high 
Reynolds number with the vortex-in-cell code. They initialized a non-symmetric 
‘ street ’ of two positive and two negative regions of vorticity and observed a variety 
of parameter regions that lead to vortex merger. Zabusky, Hughes & Roberts (1979) 
obtained the critical separation distance for merger of two circular vortex regions 
with uniform vorticity and equal radii in a numerical study using a contour dynamics 
(CD) representation of the Euler equations. Overman & Zabusky (1982) presented a 
variety of CD calculations and showed that merger can result from an instability of 
an unstable steady corotating state. Dritschel(l986) used the CD representation and 
presented more detailed evidence that the merger of two nearly stationary vortices 
depends on the configuration’s linear stability. 

In  spite of its importance, there has been little basic understanding of why the 
merger process occurs. We claim that the process is an ‘ axisymmetrization ’ process 
driven by filament formation. The symmetric merger phenomenon to which this 
paper is devoted is physically a rare occurrence, but mathematically its simplified 
nature is convenient. In fact, the symmetry makes the second-order moment model 
(Melander, Zabusky & Styczek 1986) integrable. Although the model is based on the 
assumption that the vortices are well-separated and therefore becomes increasingly 
invalid during a merger, the model yields a good description of the initial stages of 
evolution towards a merger. Most important, we obtain from the model an explicit 
condition for the threshold to merger. I n  the case of nearly circular vortices (aspect 
ratio < 2.3) this merger condition involves only the ‘excess’ energy and the angular 
impulse. 

We emphasize the use of ‘Complementary modelling’ as a mode of study for this 
nonlinear dynamical problem. Namely, we use a pseudospectral algorithm as a 
faithful representation of the evolution of smooth vorticity distribution in a weakly 
dissipative two-dimensional fluid (e.g. 92), and we use the moment model as an 
analytically tractable low-order representation for obtaining analytical insights ( 3  3). 
The results from these different models are juxtaposed in 394 and 5. In $6  we examine 
the influence of dissipation on the merger process using the same complementary 
modelling approach. 

2. A high-resolution simulation of a symmetric merger 

governing the evolution of the vorticity and stream function : 
Vortex dynamics in two dimensions can be described by the following equations 

d, w W ,  -I- W ,  $, - W ,  @cg = v 2  AW - v4 A%, 

A $ = - @ .  ., 
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Here v 2  is the traditional Newtonian viscosity and v4 is a hyperviscosity frequently 
used in spectral models. (When v2 = v4 = 0, we have the two-dimensional Euler 
equations). In this section we discuss a numerical solution of (1) and ( 2 )  with v 2  = 0 
and v4 + 0. The simulation is performed with a pseudospectral code (Haidvogel 
1985) which solves ( 1 )  and ( 2 )  in the periodic domain [-x, x] x [-x, x]. We initialize 
with two isolated smooth vortex distributions of compact support. Each distribution 
is specified in a polar coordinate system ( r ,  $) centred a t  the distribution's centroid. 
The equivorticity lines of each of these vortices are concentric ellipses with a common 
orientation and aspect ratio. Outside the ellipse r = R,($) there is no vorticity and 
inside r = Ri($) the vorticity is uniform, w = wp. The relative steepness of the 
vorticity gradient is given by the parameter S = (Ro-Ri)/R,. We refer to such a 
vorticity distribution as V(6,  up, a,  b ) ,  where a and b are the major and minor axis of 
the outermost ellipse r = Ro($). We have found it convenient to specify w ( r ,  $) as a 
distribution with a monotone profile function f ( r ) ,  r > 0. 

This function smoothly connects levels 0 and 1 at  r = 0 and r = 1, and all its 
derivatives vanish a t  these points. A suitable k is obtained from the natural 
requirement that f (0.5) = 0.5, and this implies that k = 2.56085. With this choice of 
k we find f'(0.5) = In8 z 2.08, and approximately 90% of the variation of the 
function f occurs within the interval (0.25,0.75). 

Figure 1 shows the evolution of two smooth initially circular vortices, specifically 
two V (  1,20,0.9,0.9) vortices with an initial centroid separation of 1.35. This centroid 
separation is well below the critical merger separation which guarantees a quick 
merger. The simulation is performed on a 2562 mesh with v4 = 4.0 x until 
t = 4.0. From there on the calculation is done on a 1282 mesh with v4 = 50.0 x lops 
until t = 8.0. Panel ( w )  shows the evolution of the vorticity field. Panel ($) shows the 
corresponding stream function. This simulation represents a typical symmetric 
merger. It is evident from figure 1 that a nearly axisymmetric monopole is produced 
on a circulation timescale. On the basis of simulations like this one, we claim that 
(symmetric) merger is an inviscid axisymmetrization process. In  fact, i t  is quite 
similar to the process in which a non-circular monopole tends towards circular 
symmetry on a convective timescale (Melander et al. 1987a). In  order to see this 
similarity clearly we introduce a corotating stream function $c : 

$ , (x ,y ; t )  = ~ ( X , y ; t ) - ~ ( X 2 + y 2 ) S Z ( t ) ,  (5) 

where Q(t)  denotes a characteristic angular velocity for the rotation of the entire 
vorticity configuration around the common vortici-ty centroid. As discussed in 
Melander et al. (1987a), we have not found a unique or best way of defining D (except 
for corotating steady states). A reasonable D is obtained by first fitting an ellipse to a 
streamline near the edge of the vortex core, in order to define the orientation of the 
entire configuration. D is then obtained by differentiating the orientation of the 
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ftJ i,. 

FIQURE 1 (Part 1). For caption see facing page. 
i 

major axis wit,h respect to time. Using this Q in ( 5 )  yields the corotating stream 
function displayed in panel ($,) of figure 1 .  The comparison of the panels ( w )  and 
($,) immediately justifies the introduction of the corotating stream function, 
because we observe that the vorticity configuration deforms and spins off arms of 
vorticity (filaments) in accord with the structure of the corotating stream function 
$c (as described in great detail in Melander et al. 1 9 8 7 ~ ) .  

The corotating stream function $rC clearly has more closed streamlines and 
stagnation points than the original stream function. The introduction of a rotating 
reference frame gives rise to two fictitious vortices, which we shall call ghost vortices. 
It is instructive to compare the structure of $, for a single elliptical vortex with the 
structure of $, for two nearby vortices. Figure 2 shows a qualitative sketch of the 
differences. For the two-vortex configuration, shown in figure 2 ( a ) ,  we observe seven 
stagnation points, three saddle points and four centres. The separatrices connecting 
the saddle points divide the plane into six regions. Of special interest are the ghost 
vortices G, and G,. Their existence is associated with the ellipticity of the global 
vorticity distribution, as seen by comparing with the corotating stream function field 
for a single ellipse (figure 2 b ) .  The ghost vortices can give rise to the generation of 
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FIGURE 1. Simulation of the evolution of two smooth initially circular vortices V(1,20,0.9,0.9), 
with an initial centroid separation of 1.35. The panels at t = 0, t  = 0.375,t = 0.625, t = 1.125, 
t = 4.0, t = 8.0 show the vorticity field (o), the stream function (k) and the corotating stream 
function (kc) as defined in (5). For t < 4.0 the simulation was performed on a 256' mesh with 
v4 = 4 x and for t 2 4.0 on a 12g2 mesh with v4 = 5 x lo-'. 

vorticity filaments along the separatrices labelled o1 and 02, as described in our paper 
on the evolution of a single elliptical vortex (Melander et al. 1 9 8 7 ~ ) .  The qualitative 
difference between the corotating stream function fields for one and two vortices is 
found in the region between the separatrices labelled i, and i, ; this region we name 
the compound core region. Inside the compound core region we identify two 
individual core regions C, and C,. Also we observe $, streamlines surrounding both 
C, and C,. These $, streamlines occupy a band (shaded in figure 2a) ,  which we 
designate the exchange band (8-band) since it allows the two vortices to exchange 
vorticity. The &-band exists for all corotating equilibria as discussed in Dritschel 
(1985). During the evolution shown in figure 1 we observe that $, changes its 
structure from a two-vortex structure of the type sketched in figure 2(a )  to a one- 
vortex structure of the type sketched in figure 2 ( b ) .  This change takes place when the 
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\ 

(0) (b)  
FIGURE 2.  Sketch of the corotating stream function for : ( a )  a two-vortex configuration ; 

( b )  an elliptical vortex. 

two centres approach the saddle A ,  to form a single centre through a centre-saddle 
annihilation. 

The &-band is essential for a heuristical understanding of the close interaction of 
two vortices. We identify three characteristically different evolutions corresponding 
to the three different vorticity distributions relative to the &-band. First, if the 
vorticity is confined to the individual core regions C, and C,, we expect the two 
vortices to circle around each other endlessly without ever exchanging vorticity or 
merging. Clearly, this case occurs when the two vortices are far apart. Second, if the 
vorticity is confined to the individual core regions and the &-band, we expect the two 
vortices to circle each other while exchanging the vorticity in the &-band; however, 
we do not expect filament generation and merger. An example of two vortices 
exchanging vorticity without merging is shown in figure 12. Third, if the vorticity 
distribution extends to regions outside the 8-band, we expect the vorticity 
configuration t>o eject filaments and undergo merger. The evolution shown in figure 1 
serves as an example. Although all three evolutions can occur and the juxtaposition 
of the $, and w-fields offers a simple heuristic explanation of each case, we cannot 
consider this discussion as more than a guide for our physical intuition because $, 
changes with w ,  and Q(t )  is not a well-defined quantity. 

The initial condition in figure 1 is selected such that there is sufficient vorticity 
outside the &-band for a quick merger. We observe that the vorticity in the 8-band 
is advected and a steep-gradient interface is formed between the two vortices a t  
t = 0.375. Owing to the symmetry in the initial conditions this interface passes 
exactly through the common vorticity centroid and will be present there until it is 
erased by dissipation. We also observe that the 8-band is growing a t  the expense of 
the individual core regions C, and C,. This is evident a t  t = 0.375, and a t  t = 0.625 
the individual core regions have disappeared entirely and the &-band has become the 
core region of a single vortex. 

At t = 1.125 most particles carrying low-amplitude vorticity have been advected 
into the filaments, thereby intensifying the vorticity gradients near the core as shown 
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FIGURE 3. ( a )  Two cross-sections of the vorticity field at  t = 1.125 along the two perpendicular axes 
A and B shown in figure 1. (A dotted line, B solid line.) The maximum vorticity is 20.0. ( b )  The 
characteristic lengthscale 6,/6,(0) versus time for the merger simulation of figure 1 (-) and for 
the axisymmetrization simulation ( .  . . . )  in figure 8 of Melander et al. ( 1 9 8 7 ~ ) .  The upper and lower 
curves in each set correspond to i2@ and 2562 simulations, respectively. 
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in the cross-sections displayed in figure 3 (a).  Since both vortices have contributed 
vorticity to each filament, the filaments look like two nearby thin vortex layers with 
adjacent steep-gradient interfaces. 

Inside the new compound vortex core there is a strong differential rotation. The 
fastest rotation occurs a t  the centre while the filaments rotate more slowly. Owing 
to this differential rotation the length of the interface between the original two 
vortices increases. The gradients across this interface thereby maintain their 
steepness for a long time in spite of the dissipation. This can be appreciated by 
considering the corresponding inviscid problem. Here, the distances between the two 
vorticity regions decrease as the length of the interface between them increases 
(Kelvin’s theorem). However, with dissipation there is a competition and although 
the region between the vorticity regions is ‘filled’ by diffusion, the steepness is 
maintained because the interface lengthens. 

In  order to diagnose this competition we define a lengthscale 8, which characterizes 
the enstrophy cascade in (1) and (2) 

It is easy to  show that with v2 = 0, v4 =t= 0, 8, is related to the enstrophy dissipation 
through the following power law : 

2.,eiK) = -g,  

where Z is the enstrophy, Z = Jw2dxdy (see Appendix A). 
In  figure 3 ( b )  we see the variation of &,(t)/&,(O) a t  two different resolutions, 12S2 

and 2562. In  each set there are two curves, a dashed one for the axisymmetrization 
of a single region of vorticity V(1,20,1.6,0.8) (the evolution is shown in Melander 
et al. 1 9 8 7 ~ )  and a solid curve for the merger of two regions of vorticity with initial 
conditions as in figure 1.  The merger curve is initially below the axisymmetrization 
curve, indicating a stronger enstrophy cascade. The gradual upturn of the 128’ curve 
shows that the dissipation process decreases gradients slowly. However, the fact that 
the merger curve remains below the axisymmetrization curve and grows more slowly 
(on the average) indicates a strong competition between gradient intensification and 
dissipation. The slight downturn in both curves a t  t z 4.5 is due to formation of 
secondary filaments, as discussed in Melander et al. (1987a), $4.1. 

3. An integrable model of the symmetric merger process 
In  the previous section we examined a high-resolution numerical simulation of a 

symmetric merger. We shall now adopt a complementary modelling approach. 
Instead of resolving the process in all details we seek a model that is as simple as 
possible and still allows the merger process to occur. Although this model will ignore 
most of the details, it can provide important knowledge of the basic physics and the 
essential variables in the process. Since our understanding of the merger process is 
still imperfect (Aref 1983), a simple integrable model of this process should be most 
welcome. 

The well-known point-vortex model does not provide an integrable model of the 
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merger process, i.e. two point vortices of equal strength circle around the common 
vorticity centroid and never merge. This is because the Hamiltonian, which is 
constant in time, involves only one combination of the variables, namely, the 
distance between the point vortices. If we use more point vortices to model the 
problem more realistically we lose the integrability (Aref 1983). The only known 
model of the two-dimensional Euler equations that yields an integrable model of the 
symmetric merger is the Hamiltonian moment model of Melander et al. (1986). In the 
following, we investigate how this model applies to symmetric merger. For the sake 
of completeness, we briefly present the moment model. 

3.1. The moment-model equations 
The moment model is a low-order representation of the two-dimensional Euler 
equations, which govern the evolution of well-separated uniform vortices. The two- 
dimensional Euler equations have a weak integral formulation in terms of an 
arbitrary test function F ,  namely 

We assume that the vorticity is located in N regions D,, k = 1,2,  ..., N .  If these 
regions are well separated, elliptical and each has constant vorticity (i.e. in isolation 
each vortex is a Kirchhoff ellipse), then + is well-approximated by a quadratic 
polynomial in each region D,. If we restrict the test functions F to those functions 
that are quadratic in the vorticity regions, then (6) becomes a closed system for the 
evolution of the physical space moments, 

JEn = is,, w(x, y, t )  xmyn dx dy, 

up to the second order, or m+n < 2. Each vorticity region D, is then characterized 
by its centroid position (xk,yk), its vorticity wk, area A ,  orientation $, and aspect 
ratio A,. The moment-model equations can be expressed as 4N equations for the 
evolution of x,, yk, &, A,, lc = 1,2, . .., N as shown in Melander et al. (1986). In  these 
equations, w k  and A, appear as constants. The moment-model equations conserve 
the following : the global vorticity centroid 

and 

the total angular impulse 

k-1 1 k-1 
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x [ Aa- - (( ( x, - xa)2 - (y, - y a y )  cos 2$a 
h a  

The moment, model is an asymptotic expansion with an error of O(e3) in the 
parameter 

max diameter D, 
min centroid separation ‘ (13) .$E 

The model becomes increasingly invalid if two vortex regions approach closely, 
because in that case each region will quickly depart from an ellipse, as shown for 
example by Overman & Zabusky (1982). Also, the stream function becomes 
increasingly less well described by a quadratic polynomial inside such vorticity 
regions. 

However, asymptotic expansions have often proven accurate and useful for quite 
large values of t,he expansion parameter. Experiments shows that this is also the case 
for the moment model. Of particular importance for this paper is the fact the moment 
model has its own ‘merger’ process. That is, if initially two elliptical regions are 
sufficiently close together, as in figure 4, and evolve according to the moment-model 
equations, then their intercentroid distance decreases and vanishes in a finite time, 
a process we call ‘collapse ’. We have found good agreement between critical collapse 
distances of the moment model and critical merger distances of two-dimensional 
Euler equations. The difference is of the order 5 1 0 % .  For example, the critical 
merger intercentroid distance for two identical piecewise-constant circular vortices is 
3.4(A/x)i  while the critical collapse intercentroid distance is 3.2(A/x) i  (here A is the 
area of each vortex). On the basis of these observations we conclude that collapse in 
the moment model is relevant for investigating the merger phenomenon. 

Figure 5 shows the geometrical configuration for the symmetric merger problem. 
The common vorticity centroid is taken as the origin of a Cartesian system. The two 
ellipses are situated symmetrically around the origin. Clearly, the configuration is 
described by four variables, the polar coordinates of the centre of one ellipse (R, O), 
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FIGURE 4. Examples of the moment model’s ability t o  distinguish between merger and non- 
merger. The initial conditions in all three panels are uniform circular vortices with radius 1 but  
slightly different centroid separation : ( a )  D = 3.202000, ( b )  D = 3.201 520, (c)  D = 3.20000. The 
centroid trajectory of each vortex centroid is also shown. We observe that  the moment-model 
analogue of a merger is a collapse in which the centroids coincide in a finite time. Also we observe 
that  collapse (e) and non-collapse ( a )  are separated by an unstable steady state ( b ) .  Although the 
assumptions on which the moment model are based breakdown during a collapse, it  is clear from 
these three panels that  the moment model is able t o  distinguish between merger and non- 
merger. 
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FIGURE 5. A sketch of two elliptical vortices symmetrically situated around the common vorticity 
centroid. The centroid of vortex 1 has the polar coordinates (R, 0) and the major axis is tilted by 
the angle 4. In a frame rotating with angular velocity d, 0 the orientation of the major axis is $d. 

the aspect ratio A and orientation $ of the ellipses. In terms of these variables the 
moment-model equations are 

sin2(6-$), 
AwA A = -  
4nR2 

. wA wA(1+A2) 
$=- + cos 2( 6 - $), 

C O S ~ ( ~ - $ )  , 

(1 +A)'  87tR'( 1 -A') 

1 A(A' - 1) 
O=A- 

4nR2 " ['+ 87tR'A 

* A%(l-h') 
sin 2(O - $), 

32x2AR3 
R =  

where A and w are constants. These equations are derived in Melander et al. (1986). 
We make these equations dimensionless by measuring time in units of w-l and length 
in units of (Aln);. Hence the normalized equations are obtained by setting w = 1 and 
A = 7t in (14)-( 17). A convenient normalization of the angular impulse is 

u = 2xM/wA2, (18) 

where, as seen from (l l) ,  CT 2 2 with R > 0 and h 2 1. 

3.2.  The complete solution of the model equations 

It is apparent from (14)-( 17) that the angle variables appear only in the combination 
$d 3 4-6. Furthermore, since we have two conservation laws, A!? = & = 0, the 
equations (14)-( 17) form an integrable system. The conservation law for angular 
impulse, M = 0, may be used to eliminate R with 

1 1 K = - =  
4R2 ~ - ( l + A ' ) / h '  
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Thereby, we can express the system in terms of #, and A, or 

i = -AK sin24,, 

4, = Q,-Q,, 

where 

] 'OS '$d}' 

Here Q, is the angular velocity of self-induced rotation of the Kirchhoff ellipse and 
Q, is the angular velocity produced by the neighbouring vortex. Hence the angular 
velocity of a vortex in the frame rotating with the two centroids is the result of a 
competition between mutual- and self-interaction. 

The system (20) and (21) is autonomous. Hence for a fixed value of cr, a conserved 
quantity, the problem is within the framework of a classical phase-plane analysis. 
However, ( A ,  $d) is an inconvenient set of variables because there is a singularity in 
the equations for h = 1, which is due to the way we describe the ellipse, namely, by 
an aspect ratio and an orientation. (Clearly, the orientation is not well defined for a 
circle.) There are other bad features of the (A ,  $,)-description as well. For example, the 
same ellipse can be described in many ways, ( A ,  q5d), ( l / h ,  q5d +an), etc. A convenient set 
of coordinates for the problem is 

whereby each ellipse is uniquely represented and the equations are non-singular for 
h = l  

2 
2 + (4 + D2 +G2)i) ( -GD)-(K(4 + 

(26) - 1 = cr-(4+D2+G2); .  
K 

where 

In terms of the new variables (D, G) the excess energy is 

H = tn[;DK-- In ([2 + (4+ D2 +G2)a] /4K)  + $1 
=a. ___ (A2- 1) cos2q5d-ln( R2( 1 + )+;I. [ 8R2h 

The trajectories in the (D, G)-plane are the level curves of H .  

3.3. The merger condition 
Our interpretations are based on the (D,G)-phase plane. The origin in this plane 
represents circular vortex regions ( A  = 1 ) .  As we move away from the origin h 
increases and R2 K K-' decreases, as seen from (24) and (26). R becomes zero on a 
circle C, of radius (cr2 -4); and centre (0,O). Since the second-order moment model is 
a reasonable representation for the Euler equations only when the vortices are not 
too close, then evolution on this plane fails to describe a true merger as we approach 
the circle C,. Equations (25) and (26) are reflection symmetric about the D-axis, 

1 1  F1.M 195 
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FIGVRE 6. The inverse aspect ratio of the steady corotating states of the moment model is plotted 
versus the inverse dimensionless conserved quantity u = 27cM/wA2. I (-) are centres and 9 
(----) are saddle points. For the d and 93 states the major axes of the vortices are aligned. For 
a given value of u the aspect ratio h must be smaller than ;[a+ (u2-4)i] in order to have a real non- 
vanishing centroid separation. The unphysical (hatched) region where this condition is not satisfied 
is shown. The polynomial (28) has one real root V (-.-.-) in this region. The figure also shows 
results (0) from the steady-state contour-dynamical calculations of Overman & Zabusky 
(1982). 

corresponding to time-reversal invariance. Furthermore, from (20) we note that the 
aspect ratio decreases when G > 0 and vice versa. 

The steady-state solutions of (25)  have been reported in Melander et al. (1986). The 
aspect ratio of the steady states are real roots of a fifth-order algebraic equation 

4h5- 7ah4 + ( 2 a 2 + g +  6) h3- ( 2 d  + 3 ~ )  A2+5gh-8 = 0. (28) 

(In the previous work this equation was expressed in terms of the dimensionless 
centroid separation ,u = 2R(x/A)i) .  Figure 6 shows the reciprocal aspect ratio A-' of 
the states as a function of up'. There are one, two or three steady states depending 
on whether u < crcr x 11.4, CT = crcr or cr > vcr. All of them are located on the D-axis. 
A local analysis shows that d (solid) is a centre and 99 (dashed) is a saddle point. $? 
corresponds to  a solution outside the collapse circle that  is without physical meaning. 
Let us consider the different values of cr in detail. 
(a) cr < crcr. Since there are no steady states for this value of cr, all trajectories 

must approach the circle C,, as shown in figure 7 .  Since the energy remains constant 
as a trajectory approaches the circle C, (where R = 0) the singular terms in ( 2 7 )  are 
in balance. This implies that  all trajectories approach one point on C, where D = 0 
or cos2q5, = 0 or = -ax. The corresponding point at q5d = +ax is the 'repeller' 
corresponding to time-reversal invariance. 

( b )  cr = crcr. In this case we have one unstable steady state. All other trajectories 
lead to collapse, except one which ends at the unstable steady state. This value of cr 
is a turning point in the bifurcation diagram shown in figure 6, and the stability of 
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G 

FIGURE 7 .  The phase plane for (T = 11.0 < gcr. 

the solution branch changes a t  this point. For the full Euler equations a similar 
turning point exists, but it is located a t  a slightly larger value of cr. Saffman & Szeto 
(1980) claim that the stability of the steady state changes at this turning point. 
However, a detailed stability analysis by Dritschel (1985) shows that the change of 
stability occurs close to but not exactly a t  the turning point. 

( c )  (T > uCr. This is the most complicated and interesting case. We have two 
physically significant stationary points, and we observe from the phase portrait 
shown in figure 8 that  there is a critical separatrix 9' starting and ending a t  saddle 
point 97. All initial conditions outside Y lead to centroid collapse. Inside Y we have 
closed orbits and the centre d. Along a closed orbit surrounding the origin, $d 

increases steadily, so that vortices rotate counterclockwise in the corotating frame 
(in figure 8 where (T = 12.0 there are no orbits of this kind, but they occur for larger 
values of (T). However, on orbits not surrounding the origin, $a oscillates around zero, 
corresponding to a nutation of ellipses in the corotating frame. Since H has a 
constant value on each trajectory in the phase plane, we can characterize Y by the 
value of H at the saddle point g, namely 

where A, denotes the aspect ratio of the unstable steady state B. The region of the 
phase plane inside Y is then characterized by 
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FIGURE 8. The phase plane for u = 12.0 > gcr % 11.4. Only the central part of the diagram is 
shown. d is the centre within the hatched region and B is the saddle point. Y is the 
separatrix. 

Hence, centroid collapse will occur i f  and only i f  any one of the following conditions is  
satisjied : 

(T < rcr; H > H,(a); h > A,((T). (31) 

Equation (31) is the first complete analytical solution of the merger problem for the 
Euler equations as represented by the second-order moment model. It constitutes a 
solution of one of the problems posed by Bassett (1888). 

3.4. An alternative view of the merger condition 
In  this section we present a more easily accessible view of the merger condition (31) for 
the practitioner. That is, we show how the natural parameters of problem, namely 
the conserved quantities H and ( ~ ~ l ,  vary with the physically obvious parameters R 
and h of the initial conditions. We restrict ourselves to  initial conditions where the 
ellipses have their major or minor axis along the intercentroid axis, e.g. as shown in 
figure 9 ( a ) .  

The ( H ,  r-l)-diagram of figure 9 ( a )  is obtained from the definition of (T in (18) and 
H in (27). Curves d and &9 (solid and dashed, respectively) are the stable and 
unstable steady states discussed previously and illustrated in figure 6. Merger will 
occur if the initial condition is above &9 or below d .  Betzween at' and 93 (e.g. a t  
constant a-l) the system exhibits either merger or periodic solutions, The latter 
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FIGURE 9 ( a ) .  The H us. (r-l merger diagram for the second-order moment model with symmetric 
initial conditions. Curves d and S represent the stable and unstable steady states, respectively. 
(Also shown are curves for R = 1.4, 1.6 and 1.8 and A = 0.5, 1.0 and 1.5). Merger will occur if the 
initial conditions are above C!8 or below d. Between d and S the system exhibits either merger or 
periodic solutions. The latter occurs if the h associated with the initial conditions is smaller than 
As, as indicated in (31).  

occurs if the h associated with the initial condition is smaller than A, (as indicated 
in (31)). For nearly circular initial conditions, that is 

h < min h,(cr) z 2.3, 
U 

the system exhibits periodic solutions between d and 99, 
In figure 9 (a) we show three constant-R cases (light dotted lines), R = 1.4, 1.6 and 

1.8 and three constant-h curves, h = 0.5 (light dashed), 1.0 (light solid) and 5.0 (light 
dashed). It is clear that  for R = 1.4 all initial conditions lead to merger. For R = 1.6 
the curve starts in the unstable region and crosses into the stable region (near the 
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Back 

FIGURE 9(b).  A three-dimensional plot of the initial states exhibited in the insert in (a ) .  The axes 
are (c', H ,  2R) .  Projections of the surface on four planes are shown. The horizontal projections 
correspond to constant R (lower) and constant h (upper) curves in (a).  The vertical projections are 
included to help interpret the complex geometry of the twisting surface (hidden lines are not 
removed). The backplane shows 2R vs. H and the left-plane shows 2R vs. g-l and lines of constant 
h are plotted. 
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intersection with the h = 1 curve). It becomes tangent to curve d and loops upward 
in the stable region and becomes tangent to curve 93. At this point of tangency the 
stability reverses; i.e. although the R = 1.6 curve remains between d and 98 the 
system is unstable. Additional R = constant curves (e.g. R > 1.8) exhibit the same 
qualitative behaviour. Thus we see that curves d and 93 arise as the envelopes of the 
constant-R curves. 

We attempt to elucidate this complex behaviour by showing projections from the 
three-dimensional surface of figure 9(b) which defines the initial condition in the 
space (cr-l, H ,  ZR), where 2R is the initial intercentroid distance. The lower horizontal 
projection on the H us. cr-l diagram shows nine constant-R curves. The upper 
horizontal projection on the H os. cr-l diagram shows 8 constant-h curves. In 
figure 9(a) we see that there are two types of constant-h curves. For example, the 
h = 0.5 and h = 1.0 curves first intersect curve 93 as cr-' decreases, whereas the 
h = 5.0 curve first intersects curve d as cr-l decreases. To assist in the inter- 
pretation of this twisting surface (note the hidden lines are not removed) we 
present two vertical projections, designated back and left where both nonstant-h 
and constant-R curves are drawn. 

To conclude, figure 9(a) not only presents a useful graphical view of the merger 
condition (31), but also indicates how the point-vortex model is obtained as a limit 
of the moment model. For example, as c-' decreases (corresponding to increasing 
intercentroid distance, 2R) the h = 1 curve intersects curve 93 and approaches curve 
d asymptotically. 

4. Validation of the merger condition for the Euler equations 
In this section we examine the applicability of the explicit collapse condition (31) 

for the Euler equations approximated by contour dynamical and weakly dissipative 
pseudospectral (v4 =k 0, v2 = 0) representations. We shall plot points corresponding to 
an initial condition of circular vortices on the (H,a-')-diagram discussed in the 
previous section. We choose circular vortices to simplify the consideration and 
because near-circular vortex regions evolve from initially power-law energy 
distributions (McWilliams 1984) and elliptical vortex distributions (Melander et al. 
1 9 8 7 ~ ) .  

To locate smooth initial conditions on the (H,cr-')-plane, we generalize the 
definition of cr 

where M is the angular impulse 

M = ~ ~ o ( x , y ) ( x 2 + y ' ) d x d y .  (33) 

We shall now approximate M and r for vorticity distributions given by V ( S ,  wp, 
a,  b) .  We consider two vortex regions situated symmetrically around the common 
vorticity centroid. The distance between the individual centroids we designate 2R. 
Furthermore let A($ be the area of the vorticity contour o = of one vortex. 
Thereby, we have 

M = 2rR2+- 2Kh r A z ( c ) d c ,  

or 

(34) 

(35 )  
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1 - 
Evolution Algorithm 8 0. H 

P S 1 .00 0.051 20 1.937 
P S 1 .00 0.051 23 1.936 
P S 1 .OO 0.05494 1.907 
M S 1 .00 0.057 65 1.879 
M S 1 .00 0.06055 1.846 
M S 1 .oo 0.065 31 1.787 
M S 1 .OO 0.091 87 1.457 
P S 0.75 0.063 14 1.736 
P S 0.75 0.06504 1.710 
P S 0.75 0.06702 1.683 
P S 0.50 0.05252 1.846 
P S 0.50 0.06891 1.614 
PE S 0.50 0.07261 1.565 
M S 0.50 0.07289 1.562 
M S 0.50 0.077 17 1.509 
M S 0.50 0.09842 1.276 
P CD 0.00 0.064 76 1.646 
P CD 0.00 0.07352 1.520 
PE CD 0.00 0.07376 1.518 
M CD 0.00 0.109 79 1.147 

TABLE 1 .  The first column gives the result of the long-time evolution, M = merger, P = pulsation, 
PE = pulsation with exchange of vorticity. The second column gives the numerical algorithm used, 
S = spectral code, CD = contour dynamics. u is the dimensionless angular impulse and H is the 
dimensionless excess energy. 

where we have approximated V(6 ,  up, a ,  b )  by an elliptical frustrum of a cone, see 
Melander et al. (1987 a) .  Using the same approximation we find 

The excess energy -+jw$dxdy is determined only up to an arbitrary additive 
constant because the stream function is determined only up to an arbitrary additive 
constant. Thus when we compare two different methods it is of importance to use 
exactly the same stream function. Owing to  the logarithm in (36) we have to choose 
a characteristic lengthscale L before we can fix the additive constant. A natural 
normalization of $ arises when its large-r expansion has no constant term, 

The stream function used in the moment model obeys this normalization with 
L = (A/n)t  = ( T / w ,  n);. Our simulations with smooth vorticity distributions are done 
with a pseudospectral numerical code (Haidvogel 1985) in the domain [-n, n] x 
[ - x ,  n]. Both w and $ are normalized such that their area integrals over the box 
vanish. Although these normalizations do not affect the velocity field, they obviously 
affect the excess energy. In  order to ensure the same normalization as for the moment 
model, we calculate H and $ using only the initial condition and (37). Thus, we 
neglect the influence of the periodic boundary conditions and dissipation. (Another 
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FIGURE 10. For moderate aspect ratios ( A  < 2.3) the merger condition reduces to a relation 
between H and u. In the ( K ' ,  Hf-plane the corotating steady states form two curves. The upper 
curve (-) represents the stable steady states ; the saddle points in the phase plane are located 
on the lower curve (----). The shaded region between the two curves represents all the pulsating 
solutions. Results from continuum model simulations (table 1 )  are also plotted in the diagram : 
(0) merging solutions, (0 )  pulsating solutions. The number at  each circle gives the value o f  
S = (Ro-  R,)/R,,  and shows the insensitivity of the collapse condition to 8. 

detailed discussion of the excess energy and an efficient way of calculating it in 
contour-dynamical simulations is given in Dritschel (1  985) .) 

Table 1 presents a list of continuum model simulations which are also plotted on 
figure 10. For each simulation the value of H and g-l is shown, together with the result 
of the long-time evolutions, that is, merger or pulsation. We observe a remarkable 
agreement, that is, the open circles (done with h = 1 )  which correspond to merger are in 
the outer region where the moment model indicates collapse. The numbers adjacent 
to the circles in figure 10 show the values of 6 in V(6,  up, a,  b).  Although the moment 
model does not contain the parameter 6 we see that the collapse condition is 
insensitive to the vorticity profile as given by 6. Increasing 6 (namely, values of 0.5, 
0.75 and 1)  displaces the h = 1 curve downward on the ( H ,  r-')-diagram but does not 
affect the stability-instability transition. 
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FIGURE 11 (Part 1). For caption see facing page. 

5. Verification of the model’s dynamical prediction 
The moment, model not only provides us with an explicit merger condition (31), 

but uncovers some interesting dynamical features of the merger phenomenon - 
particularly, that the presence of an unstable steady state is crucial for the merger 
process. A t  this steady state (the saddle point 99 in the plane, figure 8) the trajectories 
leading to merger are separated from the trajectories not leading to merger by the 
critical separatrix 9. We shall now make a reasonable demonstration that there is 
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FIGURE 1 1 .  Evolution of the vorticity for two symmetrically placed states V(0.2,10.0,0.6255,0.4) 
on a'2562 mesh with v, = 3.125 x lo-*. The initial intercentroid distance is 1.44 and the box size is 
271. We have subtracted the bulk rotation in the picture since it is irrelevant for our discussion. The 
contour interval is 0.6. 

a corresponding unstable state in the full Euler equations a t  the threshold to merger. 
We do that by the use of two high-resolution simulations - corresponding to initial 
conditions on either side of the critical separatrix 9. 

Figure 11 shows a numerical simulation of the evolution of two isolated vortex 
regions in a corotating frame as calculated on a 256' mesh with v4 = 3.125 x lo-'. The 
initial conditions, chosen to correspond to the Overman & Zabusky (1982) 
simulations, are near top hat (small 6)  of elliptical shape, V(0.2,100, 0.6255,0.4), and 



326 M .  V .  Melander, N .  J .  Zabusky and J .  C .  McWilliams 

have (T = 12.66. By trial and error we have adjusted the centroid separation to 1.44, 
which is slightly smaller than the critical merger separation. We observe that the two 
vortices approach and the lower contours reconnect a t  t = 1.0. As the vortices 
continue to approach each other, steep vorticity gradients form along an almost 
straight-line interface between the vortices, where the dissipation acts strongly and 
the interfacial contours are erased. The excess vorticity, defined to be the vorticity 
outside the core radius C, and C, shown in figure 2 ( a ) ,  is initially confined to the 
&-band and is convected around both core regions. In fact, the excess vorticity is due 
to the non-ellipticity of these regions. Therefore, we observe the arrival of two 
separated regions of excess vorticity a t  the central stagnation point A,  at  t = 0.5 and 
a t  t = 1.5. A careful study of the pictures, showing the evolution until t = 3.75, 
enables us to follow the transport of excess vorticity in the &-band. For example, a t  
t = 2.5 a region of excess vorticity arrives a t  the stagnation point A ,  and a similar 
region arrives a t  A,. I n  the meantime, the location of the stagnation point has 
changed slightly, such that part of the excess vorticity is outside the &-band 
and filamentation begins a t  t = 3.0. From this point on the evolution is an 
axisymmetrization of a single vortex core, as described in Melander et al. (1987a). 

We observe that the state barely changes its shape in the time interval from 
1.0 < t < 3.0. During this period the state looks like an unstable steady state (a) 
predicted by the moment model. After t = 2.5 we can no longer distinguish the 
individual vortices, since the dissipation has erased the gradient between them. For 
t > 3.0 the compound core begins to axisymmetrize. We display pictures of this 
evolution because they constitute a unique example of the evolution after a merger 
of nearly uniform vortices (comparable to contour dynamics) and because they 
highlight the complicated entanglement of long filaments. At t = 5.0 we see a 
significant vorticity shedding and the formation of strong filaments. The almost 
complete absence of the ‘roll-up’ phenomenon is due to the smooth vorticity 
distribution which increases the ‘roll-up ’ timescale (Pullin & Phillips 1981) but has 
nothing to do with the periodic boundary conditions (actually the periodic boundary 
conditions are in favour of the roll-up). At t = 8.0 the vorticity shedding has stopped 
and a near-elliptical core has formed. The presence of the filaments has a dramatic 
influence on the core, particularly when they reattach to the core. The figures a t  
t = 9.0, t = 9.5 and t = 10.0 represent our cleanest example of a reattachment. The 
evolution beyond t = 10.0 has not been calculated, but is within the framework of the 
axisymmetrization of a single vortex (Melander et al. 1987a). We expect relaxation 
to axisymmetry through further ‘ breakings ’, that  is, ejections of vorticity from 
the core. Note that a t  early times D. G. Dritschel (1987, private communication), 
using the contour-dynamics surgery code, has observed similar results, including 
reattachment. 

While figure 11 corresponds to a trajectory slightly outside the critical separatrix 
Y in the phase plane, figure 12 corresponds to a trajectory slightly inside 9. This 
figure is the result of a 128’ mesh calculation with v4 = 50 x We begin with the 
same initial conditions as previously, but the centroid separation is now increased to 
1.45. Except for the obvious smoothing effect of increased dissipation, the evolution 
until t = 2.0 is the same as before. In  the time interval from t = 2.0 to t = 5.0, we 
observe an alniost steady state corresponding to the saddle point in the phase plane. 
At t = 7.0 this state begins to break into two vortices and a t  t = 8.5 only the two 
lowest contours are joined. The vortices approach again a t  t = 9.0 and a t  t = 10.0 we 
observe a near recurrence to the steady state. Note that these two vortices will merge 
eventually owing to the presence of dissipation, which slowly reduces the magnitude 
of u to a value below ucr, as will be discussed in $6. 
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FIGURE 12. Evolution of the same two vortices as in figure 11  but with the initial intercentroid 
separation inrrraoed to  1.45. The calculation is performed on a 12S2 mesh with v4 = 50 x 

In thc case that v > v,, the moment model yields simple rules of thumb for 
determining if merger is going to occur. Table 2 presents simple rules for determining 
long time evolution from a short-time evolution in the vicinity of the saddle point 9?. 
The separatrices divide this region of the phase plane into four sectors, labelled in 
figure 8. For initial conditions near the threshold to merger the trajectory will enter 
one of these sectors in less than half a revolution in the corotating frame. That is, one 
sees the long-time evolution from about half a revolution in the corotating frame. 

It is easy to recognize a vorticity configuration corresponding to a state in t,he 
neighbourhood of the saddle point 98 because the vortices are aligned and fairly 
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Sector 
[see figure 8) Characteristic Long-time evolution 

1 4.d  ' . Periodic pulsation (non-merger) 
2 $d O ,  $d Merger 
3 $.d < Merger 
4 $a > '> 6,  Merger after one pulsation 

TABLE 2. Correspondence of short-time and long-time evolutions according to initial locations 
in the (D, G)-phase plane. 

sector (1) sector (3) 
__L 

sector (2) sector (4) 

FIGURE 13. Four different perturbations of the unstable corotating steady state (B). Each 
perturbation corresponds to a point in one of the four sectors around the saddle point in the phase 
plane (figure 8). 

elongated, h > min,{h,} z 2.36. Furthermore, the points on the D-axis between d 
and A? are characterized by : 4, = 0 ; 4, > 0, = 0 ; Ji < 0, where the last follows from 
(26) since (D2+G2)  is a maximum and therefore h is a maximum. 

Table 2 shows that merger occurs if dd along the trajectory is or becomes negative 
in the neighbourhood of the saddle point A?. From (21) we observe that 4a becomes 
negative only when the clockwise rotation caused by the mutual interaction 
dominates the counterclockwise rotation of the Kirchhoff ellipse. At the stationary 
points d and B, 52, = 52,. Hence, we conclude that merger will occur if and only if 
the balance at the saddle point &? between self- and mutual-interaction is changed 
such that 52, > 52,. 
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We observe that these rules apply to the simulations in figures 11 and 12. In 
figure 11 we observe from t = 1.0 to t = 2.5 a slow clockwise rotation of the 
individual vortices with respect to  a corotating frame. Thus, according to  table 2 the 
long-time evolution leads to merger. In  figure 12 the vortices rotate counterclock- 
wise as seen by comparing t = 5.0, t = 6.0 and t = 7.0. Thus, the long-time evolution 
does not lead to merger. 

We now have two views of the symmetric merger. One, presented in $2,  is a 
physical space  kinematic view, which highlights the importance of the vorticity 
distribution relative to the stagnation points of the corotating stream function $,. 
The other view is a phase-space representation introduced by the moment 
model. 

We now juxtapose these points of view and compare evolutions subject to small 
perturbations in the vorticity field of the unstable state 99. Since the location of the 
separatrices of $, is insensitive to small perturbations of the vorticity field, we 
assume $, is unchanged in the four panels of figure 13. A point in sector 2 is obtained 
by tilting the vortices slightly clockwise. Thereby, particles carrying vorticity can be 
trapped in the ghost vortices as indicated in figure 13. These particles will be 
convected into filaments along the outer separatrices o1 and 02, thereby causing the 
vorticity field to become more axisymmetric, as discussed in Melander et al. ( 1 9 8 7 ~ ) .  
A point in sector 4 is obtained by tilting the vortices clockwise. Again, vorticity gets 
trapped in the ghost vortices as shown in figure 13 but is not convected immediately 
into the filaments. However, after half a rotation in the corotating frame we obtain 
a configuration similar to figure 13. A point in sector 3 is obtained by elongating the 
vortices and decreasing slightly the centroid separation subject to the constraint that 
the moment of inertia is conserved. Thus, as shown in figure 12, vorticity is displaced 
outside the €-band, which will result in filamentation and axisymmetrization. A 
point in sector 1 is obtained by making the vortices more circular and increasing the 
centroid separation slightly. This perturbation causes the vorticity to be redis- 
tributed in the €-band, as shown in figure 13. Hence, we expect a pulsating state 
with exchange of vorticity between the vortices, as in figure 12. 

6. Dissipation and the approach towards a metastable state 
In this section we examine the role of dissipation on the formation of long-lived 

mctastable states and merger. We generalize the moment model to include a 
primitive model of the Newtonian viscosity. The derivation is given in Appendix B. 
(Note, it is not possible to include the hyperviscosity, without including fourth-order 
moments.) 

Each vortex region is modelled as an ellipse of area A ( t )  and uniform vorticity w ( t )  
such that the circulation r is constant, and we introduce a dimensionless viscosity 
v = vJT .  Hence the evolution of each vortex region is described by five variables, 
namely, the centroid position (x,, y,), the aspect ratio A,, the orientation +, and the 
area A,. For a symmetric initial condition we suppress subscripts, and the aspect 
ratio h and area A evolve according to 

and 

(38) 

(39) 
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FIGURE 14. The ‘adiabatic’ phase plane a(0) = 12.0, v = The central part corresponding to 
figure 8 is shown. The points in the shaded region do not lead to merger on the convective time- 
scale. 

while the remaining evolution equations (15), (16) and (17) are unchanged. Note that 
the new leading term of (38) drives h toward unity and (39) shows that A increases. 
The rate of change of the total angular impulse M is identical to the Poincark identity 
for the Navier-Stokes equations 

M = 4 ~ .  (40) 

Therefore, we can reduce the number of equations and variables in the case of two 
identical vortices to three non-autonomous differential equations in the variables D, 
G and A :  

[(4 + D2 +G2) (D2  +Gz)] i  (i) 4TLv 
A 

(g) = -- 

A = 47~v(4 + D2 + G2)t .  (42) 

Here we have introduced a non-dimensional time, measured in units of l /w(O).  
Furthermore, c = 2nM/TA is now a function of time. 

When v .@ 1 the problem has two characteristic timescales, a convection timescale 
( t )  and a dissipation timescale (vt). Since cr and A change only on the slow timescale, 
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FIGURE 15. The actual behaviour of the evolution in the (D ,  G, u-’)-space for the dissipative 
model with ~ ( 0 )  = 12.0 and v = 

we can ignore the time dependence of these quantities for the study of short-time 
evolutions. Thus, for It-tt,l 6 l / v  we replace u,A( t )  in (41) by a(t,),A(t,). Thereby, 
(42) decouples from (41) and the equations become autonomous. This allows us to 
introduce the ‘adiabatic’ phase plane shown in figure 14 for u(0) = 12.0. 

We observe that d has changed to an attracting fixed point and the separatrix 9’ 
now extends to the circle C,, where R = 0. Thereby, there exist new initial conditions 
(hatched area) that do not lead to centroid collapse on a circulation timescale. 
Trajectories through these points spiral inwards towards the stable fixed point d. 
Furthermore, the steady states are no longer located exactly on the positive D-axis, 
but slightly below it. 

For long-time evolutions, the time variation of u and A results in a slow change 
of the adiabatic phase plane. Since ~ is negative and never approaches zero the two 
fixed points will eventually disappear, causing a convective merger. Figure 15 shows 
a simulation in the (D, G, l/cr)-space with the dissipative moment model. We see D 
and G undergoing near periodic oscillations until CT decreases below a critical value 
approximately equal ucr, when a centroid collapse occurs. 

The dissipative moment model has a ‘metastable’ state, namely, the stable fixed 
point a? in the adiabatic phase plane. This state changes slowly in time, that is, h and 
A increase slowly, while $d = $--8 remains almost zero. The metastable state has a 
finite lifetime, namely, the time it takes for CT to decrease to ucr and the state 
subsequently disappears in a convective merger. 

In  order to compare the dissipative moment model with pseudospectral 
simulations we must have a relatively strong dissipation, say v 2  = vr = lop3. This 
follows because we wish to observe the slow approach towards the metastable state 
and its slowly increasing aspect ratio without excessive use of computer time. For 
numerical reasons, the mesh size is linked to the magnitude of the smallest 
dissipation in the spectral code. A Newtonian dissipation v2 = 1.52 x is used for 
a 642 mesh, In order to obtain a well-resolved vorticity distribution on this mesh we 
choose the initial conditions of two V(l,20,0.8,0.8) vortices. Their initial centroid 
separation was chosen to be slightly larger than the non-dissipative critical merger 
separation, namely x1-x2 = 1.7136. 

The simulation shown in figure 16 shows three full revolutions of the vortices 
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i = O  
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FIGURE 16. The evolution of two V(1.20,0.8,0.8) vortices with a n  initial centroid separation of 
1.7136. The calculation is done on 64' mesh with v q  = 1.52 x 
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FIGURE 17. Diagnostics for the evolution shown in figure 16. For one of the contours at vorticity 
level o = 8.0 we have calculated the aspect ratio h (-) and the orientation in the corotating 
frame $e (---). 

around their common vorticity centroid in a corotating reference frame. We observe 
an approach towards a metastable state. After the first revolution, t x 6.5, the 
vorticity configuration remains almost unchanged throughout the rest of the 
simulation. We can explain this slowly changing configuration using the dissipative 
moment model. However, the initial transient during which the metastable state 
forms, 0 < t < 6.5, is not described by the model, as discussed below. 

We have calculated the aspect ratio and the orientation $d in a corotating frame 
of the contour w = 8.0, as shown in figure 17. The aspect ratio h of this contour 
oscillates around a steadily increasing average value and $d oscillates around zero, 
corresponding to a nutation in the corotating frame. Similarly, in the moment model, 
h and q5d behave in the same way along a trajectory that spins around the stable fixed 
point in the adiabatic phase plane. Furthermore, the slowly increasing average 
aspect ratio of the o = 8.0 contour is similar to the slowly growing aspect ratio of the 
metastable state in the moment model. The slowly increasing average aspect ratio of 
the individual vortices, evident in figures 16 and 17, is somewhat counterintuitive. 
Intuitively, one would have expected that individual vortices become increasingly 
circular in the presence of dissipation. However, the dissipative moment model 
explains satisfactorily why that does not happen. 

Note, when the vorticity configuration corresponds to a point ( D , G )  in the 
neighbourhood of the saddle point, e.g. in the phase plane in figure 16 a t  t x 0.75, 
steep gradients develop along an interface between the two vortices and are strongly 
affected by dissipation. This enhances the rate of approach to the metastable state. 
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The moment model does not contain this strong dissipation near the saddle point. 
Hence, one possible way of modelling this phenomenon would be to include a 
nonlinear dissipation u(D; a). 

7. Conclusion 
This paper takes the first step towards an analytical understanding of the merger 

of two isolated like-signed vortex regions. For reasons of mathematical simplicity we 
have considered the merger of a symmetric vortex system. 

We apply a complementary modelling approach and use three algorithmic 
representations of the Euler and Navier-Stokes equations. For high-resolution 
continuum distributions of vorticity we make simulations with a pseudospectral code. 
For piecewise-constant distribution of vorticity we refer to contour-dynamical 
results, in the literature. Finally, for a low-order analytically tractable model of the 
Euler equations we use the Hamiltonian moment model. This model is simple yet 
involves sufficient degrees of freedom to capture the first stages of a merger. By 
juxtaposing results obtained from these very different models, we arrive a t  the 
conclusions listed below. 

The long-time result of an isolated merger process is an axisymmetric monopole 
surrounded by a tangle of nearly concentric filaments. The chief mechanism in the 
evolution towards axisymmetry is filament generation. The details are described in 
Melander et al. (1987a), where we investigate the axisymmetrization of an isolated 
elongated vortex. The similarities and small differences between these two processes 
are highlighted in § 2 .  

The dimensionless angular impulse CT, defined in (18) or (32), is an essential 
parameter in the merger problem. The existence of steady corotating states depends 
on the value of CT, There is a critical vaue of u below which no steady corotating states 
exist. Above ucr E 11.4 stable and unstable states coexist. The steady corotating 
states are of paramount importance. If no such states exist (i.e. CT < gcr) all initial 
conditions lead to merger, whereas if steady corotating states exist some initial 
conditions lead to merger while others do not. We remark that ucr may depend on 
the vorticity amplitude distribution. In  the following we shall consider initial 
conditions with a fixed vorticity amplitude distribution. 

For u > ucr there exists a t  least one unstable steady corotating state. For the 
moment model there is exactly one such state and it is located exactly on the merger 
threshold. That is, we can find both merging and pulsating sohtions that at some 
point in time get arbitrarily close to the unstable steady state. In  fact, a continuous 
change from a merger initial condition to a pulsation initial condition will pass 
through an initial condition from which the dynamical evolution asymptotically 
approaches the unstable steady state. We have performed this procedure with the 
moment model, figure 4, and with the pseudospectral algorithm, figures 11 and 12. 
Also, Zabusky et al. 1979, performed this procedure using contour dynamics. 
However, the simulations were not carried far enough in time to reveal the unstable 
steady state and its crucial importance. 

The importance of the unstable steady state is clear from the merger condition (31) 
which is derived from the integrable Hamiltonian moment model. The critical 
constants in the merger condition are derived directly from the unstable steady state. 
The merger condition, which is the single most important contribution in this paper, 
allows us to determine from a given initial condition if merger will occur or not - a t  
least for the moment model. We expect a generalization of the merger condition for 
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the full Euler equations to be close to (31). In  order to justify this point of view we 
have compared the moment-model merger condition (31) with results from 
pseudospectral simulations. The agreement is striking (figure lo), but not exact. 

When a weak Newtonian viscosity is included in the model, the symmetric merger 
problem leads to  three ordinary differential equations which obey the Poincarc! 
identity, h' = 4rv. All initial conditions eventually lead to merger! For some, this 
occurs in a circulation timescale, whereas the others are attracted to  a metastable 
state which has a lifetime governed by the dissipation timescale. This metastable 
state disappears eventually in a convective merger. The existence and slow evolution 
of this state are well explained by the dissipative moment model. For initial 
conditions close to  the inviscid merger threshold, the attraction towards the 
metastable state is stronger in the Navier-Stokes equations than in the dissipative 
moment model. 

In nature the ideal conditions that we have considered in this paper are rare. Non- 
symmetric vortices interact in the presence of strain fields produced by remote 
vortices (e.g. shear layers and wakes), possibly in the vicinity of boundaries, and local 
topography variations. Stratification and weak three-dimensional effects can be 
important at intermediate and long times, at which time the dissipation becomes 
important. However, we believe that the physical processes and conditions we have 
identified are of the essence. That is, they will provide a robust basis for considering 
the various parameters introduced by the physical processes enumerated above. 

The work of N. J. Zabusky and M. V. Melander was supported by the US Army 
Research Office, Contract DAAG 29-84-K-0149 and the Office of Naval Research, 
Contract N00014-85-K-0029. The work of J. C. McWilliams was supported by the 
National Science Foundation. The simulations were done on the CRAY-1 a t  the 
National Center for Atmospheric Research which is supported by the National 
Science Foundation. 

Appendix A. Energy and enstrophy decay rates 

and the definition of excess energy 
We obtain decay rates for the evolution of energy and enstrophy from (1) and (2) 

1 E = - -  
2 JR2 @wda 

and the enstrophy 

Z = JRz w2da. 

For the change of energy we have 

aw 
= -J $-da = v4 $A2wda--v2 J $ A w d a ,  

R2 at R2 

r r 

= - v 4  J IVw12dg-v2 J d d o ,  
R2 R2 
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Similarly we find for the change of enstrophy 
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By introducing two lengthscales 

and 

we obtain the following decay laws from (A 1) and (A 2): 

E ES; 
T E E -  - E' - 2Z(v, + v2 s;) 

and 

Appendix B. A moment model with Newtonian viscosity, v 
The purpose of this Appendix is to generalize the moment model (Melander et al. 

1986) to include a crude model of the Newtonian viscosity. The derivation follows the 
same lines as in the inviscid case, except for a few technical details. 

From the evolution equation 

D W  
- = VAW 
Dt 

we find that for an arbitrary smooth function F 

where @ is the stream function as obtained from (7). We observe that the first term of 
(B 2) accounts for the viscous effects, while the second term of (B 2) is inviscid. 

We assume that the vorticity is initially located in N well-separated uniform 
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vortices. For nearly inviscid flows ( v  4 1 )  the vortices will remain nearly uniform for 
times much smaller than a typical diffusion timescale. We can therefore find regions 
D,, k = 1 , 2 , .  . ., N ,  each containing one vortex, such that these regions together 
account for essentially all the vorticity. By neglecting the vorticity outside these 
regions we find that the local physical space moments about the kth region's vorticity 
centroid (x,, y,), 

J k m n  = j jD,  ( x - x k ) m  (Y--yli)nw(x, y, t, dxdy, (B 3) 

obey the following equations 

JF  = 0, (B 4) 

Jp = 2vJi0+2 JJ w(x,y,t)(x--,)$,dxdy, 
D L  

Jp = 2 4 ' -  2 [ID, w ( x ,  y, t )  (y - yk) $, dz dy. 

By arguments similar to those given in Melander et al. (1986) we exclude moments 
of order higher than two in order to obtain a model which is O ( s 3 ) ,  where c is defined 
in (13). The stream function $ may be expressed in terms of the local moments in 
exactly the same way as in the inviscid case. 

We now make the crude but simplifying assumption that the kth vortex can be 
modelled as an ellipse E ,  with uniform vorticity w,(t), that is 

J k m n ( t )  = [IE, ( x - - Z k ) m  (y-ytc)" dxdy. (B 10) 

We can clearly restrict the class of permissible initial conditions such that (B 10) is 
satisfied a t  t = 0. Our goal then becomes to formulate evolution equations for w k  and 
the ellipse E ,  as described by the centroid position (x,, y,), area A, ,  aspect ratio A, 
and orientation $,. 

From (B 4) we obtain 

t,hus the circulation r, of each vortex is conserved. In  order to determine 6, and 
A,  we use the fact that for an ellipse with uniform vorticity 
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Differentiating with respect to time yields 
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because the inviscid contributions cancel. When JFn is expressed in terms of A,,  
A, and $ k  we find from (B 13) 

(B 14) 
1 +A;  A, = 4xv-. 

‘ k  

By the same technique we obtain from (B 12) 

(B 14) and (B 15) are easily seen to be consistent with (B 11). Thus we may substitute 

From (B 2) we see that the evolution equations for the centroid positions governed 
only by the inviscid term. Therefore, we have from Melander et al. (1986), formula 
(3.25) 

Ok by ‘ k I A k .  

r, -sinOk, +p-( A 1-A: sin (30k,-2$,) (;)= a-l c -{ 2xRk, cos O,, 4xR;, A, - cos (38,,- 24,) 
a C k  +--( A ,  1 -A; sin (38,,-24,) 

4 x ~ ; ,  A, - cos pe,, - qk) 
where R,, and O,, are defined such that 

We shall now derive equations governing A, and 4,. The sum and difference of the 
main moments are 

8 - J 2 0  + J;z = -.&-& __. (B 17) 

(B 18) 

r~ I + A ;  

’k 
k -  k 

r A  i-A; 
and D k -  - J 2 O - J E 2  k =-kk cog 2$k3 

‘k ’ k  

while 

By differentiating s,, D, and J;’ with respect to time and applying (B 7)-(B 9) we 
obtain 

(B 20) 
4x v N’ r, 
A ,  a-1 xR;u 

Ak = - - ( A 2 , - l ) + A  k c - sin (2(eku-$k))>  

and 

The dissipative moment model consists of (B 14), (B 16), (B 20) and (B 21). Note that 
it differs from the inviscid model only through the time dependence of A ,  (which is 
governed by (B 14)) and the first term in (B 20). 
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It is straightforward to see that the total angular impulse 

M = c rk x;+y;+-- 
k = l  [ 4x A, 

obeys the PoincarB identity 

M = 4vr. 

The excess energy decreases according to 

H N  - = - x  “k wk 
k=l 
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which is not the same decay rate as for the Navier-Stokes equations (see (A 5 ) ) .  
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